Abstract

Ocean currents impinging on topographic obstacles such as seamounts create a high level of variability in mesoscale physical oceanography. In the N Pacific, for example, the structure of the Kuroshio and its extension differ significantly E and W of the Emperor Seamount chain, and eddy fields detected downstream may be attributed to seamount effects. Nearfield effects of seamounts have been theoretically predicted for several decades but only recently has theory been confirmed by observation. Taylor columns, quasi-stationary eddies over seamounts, alter flow patterns and thus have impacts on both benthos on seamounts and on the biota in water overlying the seamount. SE Hancock Seamount, located at the N end of the Hawaiian Ridge (29°47′N; 179°04′E), has a summit depth of 265 m. This seamount is located near the subtropical front and is at the southerly extent of productive seamounts where trawl fisheries have existed in the past. The pelagic ecosystem in the upper 200 m over the seamount clearly differs from waters at control stations at distances of 10's of kilometers away as shown by plankton and midwater trawl hauls and hydroacoustic transects conducted during 1984 and 1985. Over the seamount, hydroacoustic transects show a significantly higher biomass of scatterers as compared to control stations. Sampling these scattering layers with small midwater trawls demonstrates high densities of a resident micronekton fauna dominated by the sternoptychid fish “Maurolicus muelleri” and the mysid “Gnathophausia longispina”; these taxa were virtually absent from the control stations, were oceanic micronekton, particularly larger forms, were generally in higher abundance than at the seamount stations. Similarly, ichthyoplankton abundance differs above the seamount and at reference stations. In summer sampling, larval fishes were less abundant over the seamount whereas in winter the abundance was greater there. The differences in distribution and abundance of both micronekton and ichthyoplankton are significant and consistently observed, suggesting that physical or biological processes at the seamount have important effects on the pelagic ecosystem. Hypotheses concerning current — topography interactions, exclusion of vertical migrators, and predation by resident micronekton and fishes can be used to explain the observed effects. Seamounts and other areas of complex topography are frequently sites of highly productive ecosystems; the S Emperor and N Hawaiian Ridge seamounts provide a good example, with a catch of approximately one million tons of boarfish in ten years. The interaction of ocean currents and complex topography may play an important role in this high productivity, as demonstrated in the high biomass of lower trophic levels in the seamount ecosystem. Interannual variability in the latitudinal position of the subtropical front and the strength of current flow over these seamounts may result in significant differences in mesoscale physical oceanography and therefore in the productivity of these ecosystems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.