Abstract

Despite the extensive use of bisphosphonates (BPs) in the treatment of metabolic bone diseases associated with increased osteoclastic bone resorption, the precise mechanism of their action on bone metabolism is still unclear. To clarify at which stages of osteoclast differentiation and activation that BPs influence, we examined the osteoclasts generated from mononuclear precursors and osteoclasts in the calvaria by laser scanning confocal microscopy. The studies showed that BPs inhibit lipopolysaccharide- or parathyroid hormone-induced osteoclast differentiation, fusion, attachment, actin ring formation, and activation and that both beta3 integrin and osteopontin have an important role in cytoskeletal rearrangements associated with cell attachment and resorption in osteoclasts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call