Abstract

Current structure in the scrape-off layer (SOL) of a tokamak is analyzed. It is demonstrated that poloidal currents measured in the experiments are a combination of several current types with different physical nature. Besides the known Pfirsch–Schlüter currents and thermoelectric currents, so-called plate closing currents flowing to/from the divertor plates are also analyzed. The latter close radial currents in the SOL and below/above the X-point in the SOL and private flux region (PFR). In particular, the current flowing to the outer plate in the PFR, opposite to the thermoelectric current, is predicted for the standard single-null configuration and favorable direction of drift. In addition, a pair of currents should flow to and away from the outer plate. In the single-null configuration, they are often masked by a larger thermoelectric current. However, for the connected double null (CDN) case, where the thermoelectric current is strongly reduced due to smaller temperature asymmetry, these currents dominate. The suggested physical model is supported by the results of simulations performed with the SOLPS-ITER transport code. Simulations were done for ASDEX Upgrade (AUG), L- and H-modes, single-null configurations, and for Globus-M H-mode, both disconnected and CDN configurations. Results of the simulations are compared with probe measurements for AUG and Globus-M tokamaks, and reasonable agreement has been found. The role of parallel currents in the formation of the potential maximum/minimum in the vicinity of the X-point for strongly detached regimes is also analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call