Abstract

The genome of actinomycetes and several other microorganisms are endowed with many cryptic gene clusters that can code for previously undetected, a plethora of complex secondary metabolites. Under standard laboratory controlled conditions, the genes regulating these biosynthetic clusters are expressed at very low levels or remain phenotypically cryptic (silent). Over the past several decades, multi-drug-resistant bacteria have been observed with increased frequency, posing a significant threat to human health worldwide. The present alarming situation urgently calls for concerted global efforts for the discovery of new antimicrobials. The present situation, if not controlled, will take us again to the pre-antibiotic era. Today, in the post-genomic era, various new strategies such as the activation of cryptic gene clusters in microorganisms rejuvenate a new conviction in the field of natural product research that may lead to the identification of yet-unidentified novel secondary metabolites of therapeutic and other use. Decryptification of this versatile endogenous genetic reservoir may provide in the near future the more concrete rationale for antibiotic discovery. The present review is an attempt to provide a comprehensive detail, outlining current strategies that have been shown successful to activate cryptic biosynthetic gene clusters in microorganisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call