Abstract

Spinal cord injury (SCI) is a leading cause of death and severe disability amongst young people. The incidence of SCI is 0.6–1.0 per 10,000 individuals. Unfortunately, there are no effective methods of restoring locomotor function for individuals with severe SCI. To address this issue, exoskeleton technology controlled using BCI is actively being developed for prosthetic locomotion. Despite the lack of encouraging data for severe spinal cord injuries, regenerative technologies continue to hold promise for spinal cord repair. The limited options for regenerating the central nervous system in humans necessitate creating new sources of neural stem cells for regeneration. Reprogramming autologous somatic cells neurologically can effectively serve as such a source [1]. Nevertheless, the constitution of neuroglial progenitors, which are necessary for regenerating damaged axons of the pyramidal tract, still requires clarification [2]. Some interesting efforts are underway to directly reprogram glial cells in situ using a variety of biotechnological approaches [3]. Overcoming or preventing the formation of a harsh scar tissue at the injury site is the key obstacle to successful regeneration therapy for SCI. Various scaffolds are being developed to facilitate axon regeneration, and several gene therapy agents are being tested to either knock down scar formation factors or activate extracellular matrix remodeling and reparative regeneration. Neuromodulation shows promise for SCI treatment. Studies indicate that epidural stimulation of the L2-S1 spinal cord in humans and mammals activates SPG neurons, aiding spinal walking generator functions. A potentially successful treatment approach involves scaffolds with reprogrammed cells and neuromodulation [4].

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.