Abstract

Advances in material development and processing have led to the introduction of ceramic hybrid bearings for many applications. The introduction of silicon nitride hybrid bearings into the high-pressure oxidizer turbopump on the space shuttle main engine led NASA to solve a highly persistent and troublesome bearing problem. Hybrid bearings consist of ceramic balls and steel races. The majority of hybrid bearings utilize Si3N4 balls. The aerospace industry is currently studying the use of hybrid bearings and, naturally, the failure modes of these bearings become an issue in light of the limited data available. In today's turbine engines and helicopter transmissions, the health of the bearings is detected by the properties of the debris found in the lubrication line when damage begins to occur. Current oil debris sensor technology relies on the magnetic properties of the debris to detect damage. Because the ceramic rolling elements of hybrid bearings have no metallic properties, a new sensing system must be developed to indicate the system health if ceramic components are to be safely implemented in aerospace applications. The ceramic oil debris sensor must be capable of detecting ceramic and metallic component damage with sufficient reliability and forewarning to prevent a catastrophic failure. The objective of this research is to provide a background summary on what is currently known about hybrid bearing failure modes and to report preliminary results on the detection of silicon nitride debris in oil using a commercial particle counter.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.