Abstract
The global living standards are currently undergoing a stage of growth; however, such improvement also brings some challenges. Global warming is the greatest threat to all living things and attracts more and more attention on a global scale due to the rapid development of economy. Carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) are the common components of greenhouse gases, which contribute to the global warming. Mitigation technologies for these gas emissions are urgently needed in every industry for the aim of cleaner production. Traditional agriculture also contributes significantly to enhance the greenhouse gases emission. Composting is a novel and economic greenhouse gases mitigation strategy compared to other technologies in terms of the organic waste disposal. Some of the European countries showed an increase of more than 50% in the composting rate. The microbial respiration, nitrification and denitrification processes, and the generation of anaerobic condition makes the emission of greenhouse gases inevitable during composting. However, although there have been a lot of papers that focused on the reduction of greenhouse gases emission in composting, none of these has summarized the methods of reducing the emission of greenhouse gases during the composting. This review discusses the benefit of composting in greenhouse gases mitigation in the organic waste management and the current methods to improve mitigation efficiency during cleaner composting. Key physical, chemical, and biological parameters related to greenhouse gases mitigation strategies were precisely studied to give a deep understanding about the emission of greenhouse gases during cleaner composting. Furthermore, the mechanism of greenhouse gases emission mitigation strategies for cleaner composting based on various external measures would be helpful for the exploration of novel and effective mitigation strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.