Abstract

SUMMARY Foot‐and‐mouth disease virus (FMDV) vaccines are used to protect animals against infection by the 7 FMDV serotypes composed of greater than 60 FMDV subtypes. Because of problems of both live attenuated and inactivated FMDV vaccines and also because of the very large market for an effective safe vaccine, research into other types of vaccines has been undertaken. One of the 4 virus structural proteins, VP1, is believed to be the main protein that stimulates virus neutralising antibodies and studies have concentrated on its potential as a subunit vaccine. Genetic engineering has been used to clone the VF1 gene of FMDV and VP1 synthesised from the cloned gene has been used in experimental vaccine studies. The studies in small numbers of cattle and pigs demonstrated that 2 vaccinations with genetically engineered VP1 could confer protection against FMDV challenge. However, there are a number of areas that need further research before such a genetically engineered vaccine could be used commercially. The use of chemically synthesised antigenic fragments of VP1 has recently been reported, and these synthetic fragments appear to be potentially better at producing immunity to FMDV than the whole genetically engineered VP1 protein, perhaps because of conformational problems in the presentation of whole VP1. Other possible future directions in the research and in the development of safe, effective FMDV vaccines are discussed. In conclusion, although very significant progress has been made in cloning FMDV‐VP1 genes, we are still far from a genetically engineered VP1‐FMDV subunit vaccine. In the meantime, properly inactivated and safety‐tested FMDV vaccines will continue to be used and to be of benefit to the livestock industry in countries where foot‐and‐mouth is endemic or in combating introductions of the disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call