Abstract

Boron neutron capture therapy (BNCT) is a biochemically targeted radiotherapy based on the nuclear capture and fission reactions that occur when non-radioactive boron-10, which is a constituent of natural elemental boron, is irradiated with low energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high grade gliomas, recurrent cancers of the head and neck region and either primary or metastatic melanoma. Neutron sources for BNCT currently have been limited to specially modified nuclear reactors, which are or until the recent Japanese natural disaster, were available in Japan, the United States, Finland and several other European countries, Argentina and Taiwan. Accelerators producing epithermal neutron beams also could be used for BNCT and these are being developed in several countries. It is anticipated that the first Japanese accelerator will be available for therapeutic use in 2013. The major hurdle for the design and synthesis of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations in the range of 20 μg/g. This would be sufficient to deliver therapeutic doses of radiation with minimal normal tissue toxicity. Two boron drugs have been used clinically, a dihydroxyboryl derivative of phenylalanine, referred to as boronophenylalanine or “BPA”, and sodium borocaptate or “BSH” (Na2B12H11SH). In this report we will provide an overview of other boron delivery agents that currently are under evaluation, neutron sources in use or under development for BNCT, clinical dosimetry, treatment planning, and finally a summary of previous and on-going clinical studies for high grade gliomas and recurrent tumors of the head and neck region. Promising results have been obtained with both groups of patients but these outcomes must be more rigorously evaluated in larger, possibly randomized clinical trials. Finally, we will summarize the critical issues that must be addressed if BNCT is to become a more widely established clinical modality for the treatment of those malignancies for which there currently are no good treatment options.

Highlights

  • Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when boron-10, which is a non-radioactive constituent of natural elemental boron, is irradiated with low energy (0.025 eV) thermal neutrons

  • What is the future of BNCT? It probably lies in filling a niche for those malignancies, whether primary or recurrent, for which there is no effective therapy

  • What are some of the advantages of BNCT? First, it has the ability to selectively deliver a high radiation dose to the tumor with a much lower dose to surrounding normal tissues

Read more

Summary

Introduction

Boron neutron capture therapy (BNCT) is based on the nuclear capture and fission reactions that occur when boron-10, which is a non-radioactive constituent of natural elemental boron, is irradiated with low energy (0.025 eV) thermal neutrons. Clinical studies of BNCT for brain tumors utilizing thermal neutron beams The clinical potential of BNCT first was recognized by Locher [72] shortly after the discovery of the neutron It was not until 1951 that the first clinical trials were initiated by Sweet at the Massachusetts General Hospital (MGH) and Brownell at MIT [73] and Farr at the Brookhaven National Laboratory (BNL) in New York [74] using sodium tetraborate (borax), sodium pentaborate, p-carboxyphenylboronic acid, or sodium decahydrodecaborate (Na2B10H10) as the sole boron delivery agent. In a major step forward, BPA was used as the boron delivery agent and, for the first time, patients were irradiated with a collimated beam of higher energy epithermal neutrons in two fractions on consecutive days These had greater tissue-penetrating properties than thermal neutrons and were well tolerated.

Helsinki
30 GBM 20 rGBM
Conclusions
44. Harling OK
51. Nigg DW
57. International Commission on Radiation Units and Measurements
60. Nigg DW
Findings
62. Albritton JR
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call