Abstract

The non-strange baryon spectrum has been mapped out predominantly by studying N π elastic scattering with phase-shift analysis as the tool of choice. While there has been much success with these experimental techniques, the results have fueled debates in the community, most notably regarding the missing baryons problem. Theoretical solutions to this discrepancy appeal to a diquark-system within the baryons or a coupling to states other than N π. The CLAS detector at Jefferson Lab has turned out high-statistics, photoproduction datasets which are optimal for resolving these issues. However, new analytical techniques may be required to deal with this rich physics sector. The baryon resonances are photoproduced off liquid hydrogen and the CLAS detector allows us to measure a variety of final states. We will have access to nπ +, pπ 0, pπ + π −, pω,pη, pη′, ΛK + and ΣK + final states. A robust software package has been developed that allows for the fitting of these states individually and in a coupled-channel mode. We make use of flexible C++ based tools that allow fast and general calculations of amplitudes based on a covariant tensor formalism. New techniques have been applied to background subtraction which brings an added level of consistency to the analysis. Polarization information from other experiments is incorporated at fit time to help distinguish potentially ambiguous physics processes by using information outside of the CLAS datasets. Some of these channels have more mature analysis (pω,ΛK +) and the preliminary measuremen will be shown as well as an overview of the analysis tools.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.