Abstract

Volatile fatty acids (VFA) are intermediary degradation products during anaerobic digestion (AD) that are subsequently converted to methanogenic substrates, such as hydrogen (H2), carbon dioxide (CO2), and acetic acid (CH3COOH). The final step of AD is the conversion of these methanogenic substrates into biogas, a mixture of methane (CH4) and CO2. In arrested AD (AAD), the methanogenic step is suppressed to inhibit VFA conversion to biogas, making VFA the main product of AAD, with CO2 and H2. VFA recovered from the AAD fermentation can be further converted to sustainable biofuels and bioproducts. Although this concept is known, commercialization of the AAD concept has been hindered by low VFA titers and productivity and lack of cost-effective separation methods for recovering VFA. This article reviews the different techniques used to rewire AD to AAD and the current state of the art of VFA production with AAD, emphasizing recent developments made for increasing the production and separation of VFA from complex organic materials. Finally, this paper discusses VFA production by AAD could play a pivotal role in producing sustainable jet fuels from agricultural biomass and wet organic waste materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.