Abstract

Liquefied natural gas (LNG) is attracting great interest as a clean energy alternative to other fossil fuels, mainly due to its ease of transport and low carbon dioxide emissions, a primary factor in air pollution and global warming. It is expected that this trend in the use of LNG will lead to steady increases in demand over the next few decades. To meet the growing demand for LNG, natural gas liquefaction plants have been constructed across the globe. Furthermore, single train capacity has been increased to strengthen price competitiveness. To achieve greater capacity, more complex refrigeration cycle designs that combine two or more different conventional single refrigeration cycles are being developed to obtain synergistic effects in the liquefaction process. At the same time, a variety of recent studies have focused on designing suitable processes for offshore and small-scale plants to improve the profitability of stranded gas fields. LNG plants are known to be energy/cost-intensive, as they require ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.