Abstract
In situ catalytic upgrading of heavy oil decomposes viscous heavy oil underground through a series of complex chemical and physical reactions with the aid of an injected catalyst, and permits the resulting lighter components to flow to the producer under a normal pressure drive. By eliminating or substantially reducing the use of steam, which is prevalently used in current heavy oil productions worldwide and is a potent source of contamination concerns if not treated properly, in situ catalytic upgrading is intrinsically environmental-friendly and widely regarded as one of the promising techniques routes to decarbonize the oil industry. The present review provides a state-of-the-art summarization of the technologies of in situ catalytic upgrading and viscosity reduction in heavy oil from the aspects of catalyst selections, catalytic mechanisms, catalytic methods, and applications. The various types of widely used catalysts are compared and discussed in detail. Factors that impact the efficacy of the in situ upgrading of heavy oil are presented. The challenges and recommendations for future development are also furnished. This in-depth review is intended to give a well-rounded introduction to critical aspects on which the in situ catalytic application can shed light in the development of the world’s extra heavy oil reservoirs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.