Abstract

The demand for glucose uptake and the accompanying enhanced glycolytic energy metabolism is one of the most important features of cancer cells. Unlike the aerobic metabolic pathway in normal cells, the large amount of pyruvate produced by the dramatic increase of glycolysis in cancer cells needs to be converted to lactate in the cytoplasm, which cannot be done without a large amount of lactate dehydrogenase (LDH). This explains why elevated serum LDH concentrations are usually seen in cancer patient populations. LDH not only correlates with clinical prognostic survival indicators, but also guides subsequent drug therapy. Besides their role in cancers, LDH is also a biomarker for malaria and other diseases. Therefore, it is urgent to develop methods for sensitive and convenient LDH detection. Here, this review systematically summarizes the clinical impact of lactate dehydrogenase detection and principles for LDH detection. The advantages as well as limitations of different detection methods and the future trends for LDH detection were also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call