Abstract

Pulsed laser deposition (PLD) has now reached a stage of maturity where the growth of thin films is routine. All that is required is a pulsed ultra-violet (UV) wavelength laser, a vacuum chamber, a target, and a substrate placed in near proximity to the plasma plume. Whether the film that you grow is the film that you need, and whether the thickness, uniformity, optical quality, stoichiometry, degree of crystallinity, orientation and much more is what is desired is another question entirely. PLD is both a science and an art and there are many tricks-of-the-trade that need to be considered to ensure that materials grown are the materials wanted. This paper discusses the practicalities of PLD systems, target geometries, heating regimes for successful epitaxial growth of crystalline films, the problem of particulates, laser sources to use, and in the context of our most recent PLD system, the number of independent lasers and targets used. We show that the use of multiple targets permits a combinatorial approach, whereby stoichiometry can be adjusted to grow designer materials, and in particular multilayer systems, ideally suited for active optical waveguides, a truly demanding end application where optical quality and in-plane losses must be reduced to an absolute minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.