Abstract
In liquefied ground, lateral flow is sometimes much larger than surface settlement and may exceed several meters even in a gentle slope of less than a few percent. It occurs not only during but also after earthquake shaking. Conventional laboratory soil tests using uniform sand cannot reproduce this phenomenon. Its mechanism is still poorly understood. In this paper, there is a major focus on the mechanism involving void redistribution or water film effects in layered sand deposits using recent findings obtained by different researchers on void redistribution and the associated lateral flow movement that potentially occurs in layered sand deposits. 1G shake table tests, 1D tube tests, torsional simple shear tests, in situ soil investigations, case history studies, etc. are used to develop an understanding of the lateral flow mechanism during liquefaction. Some of the major findings are; sand deposits in the field consist of sublayers with different particle sizes and permeability and readily develop water films by post-liquefaction void redistribution at sublayer boundaries. The water films may have served as sliding surfaces for large flow during the 1964 Niigata earthquake without the constraint of the dilatancy effect because the water films serve as shear stress isolators. The potential of this type of flow failure will be high for loose sand with relative density around 40% or less.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.