Abstract

Elastic deformations of graphene can significantly change the flow paths and valley polarization of the electric currents. We investigate these phenomena in graphene nanoribbons with localized out-of-plane deformations by means of tight-binding transport calculations. Such deformations can split the current into two beams of almost completely valley polarized electrons and give rise to a valley voltage. These properties are observed for a fairly wide set of experimentally accessible parameters. We propose a valleytronic nanodevice in which a high polarization of the electrons comes along with a high transmission making the device very efficient. In order to gain a better understanding of these effects, we also treat the system in the continuum limit in which the electronic excitations can be described by the Dirac equation coupled to curvature and a pseudo-magnetic field. Semiclassical trajectories offer then an additional insight into the balance of forces acting on the electrons and provide a convenient tool for predicting the behavior of the current flow paths. The proposed device can also be used for a sensitive measurement of graphene deformations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call