Abstract
With conventional voltage source gate drives (VSG), the switching speed of SiC MOSFETs is difficult to increase due to large internal gate resistance, high Miller voltage, and limited gate voltage rating. This paper analyzes the requirement of current source gate drive (CSG) for SiC MOSFETs and proposes a CSG that can improve the switching speed and reduce switching loss. With the introduction of bi-directional switches, the influence of the large internal gate resistance of the SiC MOSFET can be mitigated, and sufficient gate current can be guaranteed throughout the switching transient. Therefore, the switching time and loss is reduced. The CSG can be controlled to be a VSG during steady state so the current of the gate drive is discontinuous and the stored energy of the inductor can be returned to the power supply to reduce gate drive loss. Double pulse tests are conducted for a SiC MOSFET with both conventional VSG and the proposed CSG. Testing results show that the switching loss of the proposed CSG is less than one third of the conventional VSG at full load condition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.