Abstract

Previous anatomical research has demonstrated that the perirhinal cortex (PRC) projects to the dorsal hippocampal CA1 field. We have recently presented data (Liu and Bilkey, Hippocampus 1996; 6:125-135) which suggests that this pathway courses via the lateral perforant path (LPP). In the present study, laminar profiles of the average evoked potentials and current source density (CSD) analysis were used to study the input from the perirhinal cortex to the dorsal hippocampus in the urethane-anaesthetized rat. Stimulation of the lateral perforant path activated a current sink in the stratum lacunosum-moleculare of CA1 and the outer molecular layer of the dentate gyrus with an onset latency of 3.5 ms. Stimulation of the perirhinal cortex produced a very similar sink-source pattern with an onset latency of 4.0 ms. Higher-intensity stimulation of lateral entorhinal cortex also produced a similar pattern with an onset latency of 4.5 ms. Electrolytic lesions of PRC conducted 4-5 days prior to testing resulted in a major decrease (58%) in the amplitude of the LPP-elicited potentials and a corresponding reduction across the whole source-sink pattern. A similar result was observed following ibotenic acid lesions of PRC. In contrast, similar-sized electrolytic lesions of lateral entorhinal cortex produced a much smaller (16%) decrease in potential amplitude and little change in the source-sink pattern. These data provide further support for the hypothesis that perirhinal cortex projects to both the dentate gyrus and CA1 regions of the hippocampus via the lateral perforant path.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.