Abstract
This paper considers the current distributions that derive from finite amplitude perturbations of line-tied magnetic fields comprising hyperbolic field structures. The initial equilibrium on which we principally focus is a planar magnetic X-point threaded by a uniform axial field. This field is line-tied on all surfaces but subject to three-dimensional (3D) disturbances that alter the initial topology. Results of ideal relaxation simulations are presented which illustrate how intense current structures form that can be related, through the influence of line-tying, to the quasi-separatrix layers (QSLs) of the initial configuration. It is demonstrated that the location within the QSL that attracts the current, and its scaling properties, are strongly dependent on the relative dimensions of the QSL with respect to the line-tied boundaries. These results are contrasted with the behavior of a line-tied 3D field containing an isolated null point. In this case, it is found that the dominant current always forms at the null, but that the collapse is inhibited when the null is closer to a line-tied boundary.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.