Abstract

Single Fe atoms on Au(111) surfaces were hydrogenated and dehydrogenated with the Au tip of a low-temperature scanning tunneling microscope (STM). Fe and FeH$_2$ were contacted with the tip of the microscope and show distinctly different evolutions of the conductance with the tip-substrate distance. The current shot noise of these contacts has been measured and indicates a single relevant conductance channel with the spin-polarized transmission. For FeH$_2$ the spin polarization reaches values up to 80\% for low conductances and is reduced if the tip-surface distance is decreased. These observations are partially reproduced using density functional theory (DFT) based transport calculations. We suggest that the quantum motion of the hydrogen atoms, which is not taken into account in our DFT modeling, may have a significant effect on the results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call