Abstract

Solar observations show that magnetic reconnection can occur in the Sun's weakly ionized lower atmosphere (magnetic cancellation, Ellerman bombs and type II white-light flares). Unlike what the usual reconnection models have predicted, such a reconnection is accompanied by temperature enhancements which are less than 10%. To overcome this difficulty, we have reexamined the reconnection in a two-fluid model using a 2D numerical simulation. The numerical solutions demonstrate the following results: (1) Under the influence of Lorentz force, ionized gas carries the magnetic field into a diffusion region where part of the field is annihilated, and the current-sheet scaling laws for the weakly ionized plasma are basically the same as in the fully ionized case. (2) Though the neutral gas is not directly affected by the magnetic field due to frictional forces, its motion is almost the same as the ionized gas except in the region near stagnation point where the streamlines of both species differ appreciably. (3) The pressure of neutrals which governs the distribution of total pressure and temperature varies slightly. So the temperature of the whole domain is nearly uniform in space and constant in time. These results support the idea that magnetic cancellation, Ellerman bombs, and type II white-light flares are due to magnetic reconnection in the Sun's lower atmosphere.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call