Abstract

We study the magnetospheric evolution of a nonaccreting spinning black hole (BH) with an initially inclined split monopole magnetic field by means of 3D general relativistic magnetohydrodynamic simulations. This serves as a model for a neutron star (NS) collapse or a BH–NS merger remnant after the inherited magnetosphere has settled into a split monopole field creating a striped wind. We show that the initially inclined split monopolar current sheet aligns over time with the BH equatorial plane. The inclination angle evolves exponentially toward alignment, with an alignment timescale that is inversely proportional to the square of the BH angular velocity, where higher spin results in faster alignment. Furthermore, magnetic reconnection in the current sheet leads to exponential decay of event-horizon-penetrating magnetic flux with nearly the same timescale for all considered BH spins. In addition, we present relations for the BH mass and spin in terms of the period and alignment timescale of the striped wind. The explored scenario of a rotating, aligning, and reconnecting current sheet can potentially lead to multimessenger electromagnetic counterparts to a gravitational-wave event due to the acceleration of particles powering high-energy radiation, plasmoid mergers resulting in coherent radio signals, and pulsating emission due to the initial misalignment of the BH magnetosphere.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.