Abstract

Dynamically accurate torque control is an essential prerequisite for higher performance motor drive systems. For ac induction motors (IMs), the two most established strategies are direct torque control (DTC) and vector or field orientated control. DTC directly switches the inverter to regulate torque without requiring explicit stator current regulation. However, it suffers from variable switching frequency and is more challenging to implement in digital controllers. Vector control separately regulates the “torque” and “flux” producing components of the motor stator current and is readily suited to a digital implementation with a constant switching frequency. However, it requires accurate current control to be effective, typically achieved using a linear current regulation system. The principles of linear current regulation are well established and have been researched intensively over many years. However, their quantitative design is still an uncertain mix of theory and practice, including in particular how to best set the regulator gains. This paper addresses this issue, by presenting a precisely matched comparative analysis of three alternative PI, and a hysteresis-based, current regulation strategies, suitable for use in a “standard” vector control IM drive. The results show that properly tuned, all four strategies have essentially the same performance, suggesting that the choice between them needs really only be made on the basis of convenience of implementation and/or cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.