Abstract

The Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP) is a sounding-rocket instrument currently under development at the National Astronomical Observatory of Japan (NAOJ) as a part of an international collaboration. CLASP’s optics are composed of a Cassegrain telescope and a spectro-polarimeter which are designed to achieve an unprecedentedly accurate polarization measurement of the Ly-α line at 121.6nm emitted from the solar upper-chromosphere and transition region. CLASP’s first flight is scheduled for August 2015. Reaching such accuracy requires a careful alignment of the optical elements to optimize the image quality at 121.6 nm. However Ly-α is absorbed by air and therefore the optics alignment has to be done under vacuum condition which makes any experiment difficult. To bypass this issue, we proposed to align the telescope and the spectrograph separately in visible light. Hence we present our alignment procedure for both telescope and spectro-polarimeter. We will explain details about the telescope preliminary alignment before mirrors coating, which was done in April 2014, present the telescope combined optical performance and compare them to CLASP tolerance. Then we will present details about an experiment designed to confirm our alignment procedure for the CLASP spectro-polarimeter. We will discuss the resulting image quality achieved during this experiment and the lessons learned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.