Abstract
We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.