Abstract

Computer-assisted surgery (CAS) may allow surgeons to be more precise and minimally invasive, in addition to being an excellent research tool. Medical imaging, such as magnetic resonance and computed tomography is not only an important diagnostic tool, but also a necessary planning tool. In orthopaedic sports medicine, precision is needed when placing tunnels for soft tissue fixation of replacement grafts. Two types of CAS systems -- passive and active -- have been developed. Passive systems, or surgical navigation systems, provide the surgeon with additional information prior to and during the surgical procedure (in real time). Active systems have the ability of performing certain surgical steps autonomously. Both active and passive CAS systems are currently a subject of basic science and clinical investigations and will be discussed and commented on in this article. In summary, passive navigation systems can provide additional information to the surgeon and can therefore lead to more precise tunnel placement. Active robotic technology seems to be accurate and feasible with promising initial results from Europe. However, active and passive CAS can only be as precise as the surgeon who plans the procedure. Therefore, future studies have to focus on integrating, arthroscopy, 3-D image-enhanced computer navigation, and virtual kinematics, as well as to increase precision in surgical techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.