Abstract

The propagation of current on a thin, straight wire in an infinite chiral medium is examined by solution of the integral equation for an infinite wire and also from the moment-method solution for a long wire of finite length. The current on the infinite wire is shown to consist of three components: a discrete mode that decays exponentially and two continuous-spectrum components from branch cuts from the two chiral wavenumbers. The integral equation for a finite wire in the chiral medium is solved by the method of moments using a modified version of the numerical electromagnetics code (NEC). The moment-method solution is shown to be in close agreement with the modal solution for the infinite wire, providing validation for the numerical treatment.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call