Abstract
Current mode second breakdown is a type of voltage "switchback" observed in epitaxial transistors. The phenomenon is initiated when the emitter is injecting at a collector voltage in excess of the collector-emitter sustaining voltage, and is characterized by delay and voltage fall times on the order of a nanosecond. The device can be sustained in the low voltage state only as long as there is sufficient charge to produce conductivity modulation within the collector-base depletion region. When the available charge is exhausted, the collector voltage will recharge at a rate determined by the external circuit. At some critical current density, the collector-base depletion region collapses toward the high conductivity substrate. The electric field within the depletion region increases as the depletion region width narrows, until avalanche occurs. The sustaining voltage will be determined by the bulk base-to-collector avalanche voltage. A consequence of this behavior is that most epitaxial transistors cannot operate stably in the LV <inf xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">CER</inf> mode, and switching-off unclamped inductive circuits with the emitter-base junction terminated in some finite resistance will lead to second breakdown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.