Abstract

Current minimum, which sometimes appears as a part of the net response in differential pulse polarography (DPP), was studied in systems characterized by a pronounced IR drop or reactant adsorption. Experimental results obtained on a static mercury drop electrode (SMDE) clearly indicate that this effect is highly influenced not only by solution resistance (or intentionally added resistors) and reactant concentration, but also by both timing parameters (drop time, pulse duration) and electrode surface area. Presentation of the net response along with its components, demonstrates that the current minimum originates from the maximum on dc component, minimum on pulse component or both. In practice, DPP minimum, obtained in measurements with a SMDE, can be treated as an additional diagnostic parameter for the recognition of reactant adsorption or poor experimental conditions (i.e. high resistance within electrode system or low conductivity of the electrolyte medium)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call