Abstract

To better understand groundwater-surface water dynamics in high latitude areas, we conducted a field study at three sites in Alaska with varying permafrost coverage. The natural groundwater tracer ((222)Rn, radon) was used to evaluate groundwater discharge, and electrical resistivity tomography (ERT) was used to examine subsurface mixing dynamics. Different controls govern groundwater discharge at these sites. In areas with sporadic permafrost (Kasitsna Bay), the major driver of submarine groundwater discharge is tidal pumping, due to the large tidal oscillations, whereas at Point Barrow, a site with continuous permafrost and small tidal amplitudes, fluxes are mostly affected by seasonal permafrost thawing. Extended areas of low resistivity in the subsurface alongshore combined with high radon in surface water suggests that groundwater-surface water interactions might enhance heat transport into deeper permafrost layers promoting permafrost thawing, thereby enhancing groundwater discharge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.