Abstract
The refrigeration power for large current superconductor systems, such as for electrical power distribution, is dominated by current lead losses. The use of multiple cooling stages between room temperature and ∼70 K is investigated as means to decrease the refrigeration power. We show that it is possible to decrease the electrical power requirements for the refrigerator by about 1/3 through the use of two‐stages current leads; this computed power saving is based on a conservative estimate of refrigerator performance. Using data from real systems, that is, higher temperature refrigerators operating at higher fractions of their Carnot efficiencies we believe that the refrigerator electrical power requirement can actually be decreased by 1/2. Means have been investigated to optimize current lead performance at lower than maximum current operation. Adjustment of the cooling power of the intermediate temperature refrigerators achieves limited success in power consumption minimization. Other means to optimize the performance will be described. The implications of intermediate stages for stability of the current leads following a short overcurrent period will be described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.