Abstract

The spin-torque ferromagnetic resonance (ST-FMR) in a bilayer system consisting of a magnetic insulator such as Y3Fe5O12 and a normal metal with spin-orbit interaction such as Pt is addressed theoretically. We model the ST-FMR for all magnetization directions and in the presence of field-like spin-orbit torques based on the drift-diffusion spin model and quantum mechanical boundary conditions. ST-FMR experiments may expose crucial information about the spin-orbit coupling between currents and magnetization in the bilayers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call