Abstract

We investigate the potential to use a magneto-thermo-electric instability that may be induced in a mesoscopic magnetic multi-layer (F/f/F) to create and control magnetic superstructures. In the studied multilayer two strongly ferromagnetic layers (F) are coupled through a weakly ferromagnetic spacer (f) by an "exchange spring" with a temperature dependent "spring constant" that can be varied by Joule heating caused by an electrical dc current. We show that in the current-in-plane (CIP) configuration a distribution of the magnetization, which is homogeneous in the direction of the current flow, is unstable in the presence of an external magnetic field if the length L of the sample in this direction exceeds some critical value Lc ~ 10 \mu m. This spatial instability results in the spontaneous formation of a moving domain of magnetization directions, the length of which can be controlled by the bias voltage in the limit L >> Lc. Furthermore, we show that in such a situation the current-voltage characteristics has a plateau with hysteresis loops at its ends and demonstrate that if biased in the plateau region the studied device functions as an exponentially precise current stabilizer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.