Abstract

We experimentally and theoretically study the current-induced domain wall motion in magnetic nanowires with various widths, and discuss the issues concerning the domain wall motion in wires with reduced widths down to less than 20 nm. For Co/Ni nanowires, the threshold current density significantly increases as the width decreases below 30 nm and the domain wall motion is not observed within the studied current density range for a number of devices with the wire width of around 20 nm. The relationship between the threshold current density and wire width is reasonably reproduced by a theoretical calculation based on the adiabatic spin-transfer torque model. The micromagnetic simulation suggests that high-anisotropy materials are promising for domain-wall-motion devices with wire widths beyond 20 nm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.