Abstract
The current-induced modification of the attenuation of a propagating spin wave in a magnetic nanowire is studied theoretically and numerically. The attenuation length of spin wave can increase when the spin waves and electrons move in the same direction. It is directly affected by the nonadiabaticity of the spin-transfer torque and thus can be used to estimate the nonadiabaticity. When the nonadiabatic spin torque is sufficiently large, the attenuation length becomes negative, resulting in the amplification of spin waves.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.