Abstract

We study the quasiparticle properties of two-dimensional massless Dirac Fermions when the many-body states possess a finite momentum density in the clean limit. The lack of Galilean invariance endows the many-body states at finite momentum density with qualitative differences from those of the system at rest. At finite carrier densities we demonstrate the appearance of a current-induced distortion of the pseudospin texture in momentum space that can be viewed as a drag of the Dirac point and the origin of which lies entirely in electron-electron interactions. We discuss the potential observation of this effect in graphene.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.