Abstract

The harmonic performance of the networks of several types of electric vehicle (EV) battery chargers is documented. Cumulative effects at the substation level for random distributions of each of five different charger types are reported. Chargers with and without current- smoothing inductors and with and without controlled rectifiers for maintenance of constant current are included. Results are reported as magnitudes of expected harmonic current; active power; apparent, reactive, and distortive volt amperes; and power factor hour by hour over typical daily recharge cycles for the network of chargers. Results regarding comparisons among chargers demonstrate the desirability of including a current-smoothing inductor in the charging circuit and indicate that constant-current type chargers using controlled rectifiers generate significantly more harmonic current than the simple noncontrolled taper-current chargers. Typical third harmonic current values of 15 A per charger on the 120-V side and 20 A per phase on the 12.8-kV side for a network of chargers (at ten percent penetration of chargers into the residential distribution network) indicate the possibility for harmful effects to customer and utility equipment and for interference into communications circuits. The results reported here should be useful in both predicting harmful effects at various densities of EV chargers on the residential network and in designing chargers to minimize those effects. supported in part by the New England Electric System.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.