Abstract

We present a quantitative analysis of global and regional food supply to reveal the flows of calories, protein and the micro-nutrients vitamin A, iron and zinc, from production through to human consumption and other end points. We quantify the extent to which reductions in the amount of human-edible crops fed to animals and, less importantly, reductions in waste, could increase food supply. The current production of crops is sufficient to provide enough food for the projected global population of 9.7 billion in 2050, although very significant changes to the socio-economic conditions of many (ensuring access to the global food supply) and radical changes to the dietary choices of most (replacing most meat and dairy with plant-based alternatives, and greater acceptance of human-edible crops currently fed to animals, especially maize, as directly-consumed human food) would be required. Under all scenarios, the scope for biofuel production is limited. Our analysis finds no nutritional case for feeding human-edible crops to animals, which reduces calorie and protein supplies. If society continues on a ‘business-as-usual’ dietary trajectory, a 119% increase in edible crops grown will be required by 2050.

Highlights

  • The global food system has major impacts on the ­environment, through greenhouse gas emissions, water abstraction, soil, water and air pollution, land use change and loss of biodiversity, threatening food security and sustainability

  • The challenge of sustainably producing sufficient food for the growing global population will not necessarily be solved by increases in production because there is a limit to the potential for efficiency gains, and many of these come with greater environmental costs, while increasing agricultural area by land use change almost invariably leads to losses of biodiversity

  • The average dietary energy requirement (ADER) for each region is derived from national ADER values, which vary with body size, activity level, age and gender, calculated using the Food and Agricultural Organisation (FAO) methodology (World Health Organization & Food and Agriculture Organization of the United Nations, 2001), with results taken from Our World in Data (2017)

Read more

Summary

Introduction

The global food system has major impacts on the ­environment, through greenhouse gas emissions, water abstraction, soil, water and air pollution, land use change and loss of biodiversity, threatening food security and sustainability. Ensuring global food security is the second of 17 Sustainable Development Goals adopted by the United Nations as part of its 2030 Agenda for Sustainable Development (United Nations, 2015) but achieving this while reducing negative environmental impacts is one of the greatest challenges facing humanity. The challenge of sustainably producing sufficient food for the growing global population will not necessarily be solved by increases in production because there is a limit to the potential for efficiency gains, and many of these come with greater environmental costs, while increasing agricultural area by land use change almost invariably leads to losses of biodiversity. Achieving global food system sustainability is a hugely complex but necessary goal

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.