Abstract

The level of synergy is a quality measure of the cooperative actions of the components of cyber physical systems (CPSs). Our current research informed us that the phenomenon of synergy has not been understood sufficiently yet, and that there are many, even competing, views on how to interpret and operationalize it in CPSs. We can talk about synergy when the functionally and geographically distributed dissimilar system components work in concert together and create a system behavior/performance that is of higher value than the total of the individual components is. Towards synergy, unification and interoperation principles need to be considered both in design and in implementation of CPSs. In this paper, we elaborate on the various aspects of synergy, and critically analyze its drivers and obstacles. Our analysis extended to ontological, epistemological, methodological, manifestation and operational aspects of synergy. It has been found that emergence of truly synergic technologies, proliferation of sophisticated abstraction models, model-driven system specification, and platform-based function realization are the most important drivers of synergy. On the other hand, the different mental models and vocabularies, the lack of multi-level informatics, the limitations in handling non-hierarchical complexities, managing emergent intelligence and autonomous operation, and the premature state of informing science have been identified as the major obstacles. The paper makes a proposal for enhanced synergy by taking the advantage of the affordances and reducing the effects of the obstacles. The results of the critical analysis are design principles that can be used to increase the level of synergy of CPSs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call