Abstract

On the basis of the observation of gas bubbles evolved by electrolysis, a two-dimensional vertical model cell composed of electrodes with open parts for releasing gas bubbles to the back side is proposed. The model cell consists of two layers. One layer forms a bubble curtain with a maximum volume fraction of gas bubbles in the vicinity of the working electrode with open parts. The other. being located out of the bubble layer, is a convection layer with a small volume fraction distributed in the vertical direction under forced convection conditions. The cell resistance and the current distribution were computed by the finite element method when resistivity in the back side varied in the vertical direction along the cell. The following three cases for overpotential were considered: no overpotential, overpotential of the linear type and overpotential of the Butler-Volmer type. It was found that the cell resistance was determined not only by the interelectrode gap but also by the percentage of open area and in some cases by the superficial surface area. The cell resistance varied only slightly with the distribution of the bubble layer in the back side.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call