Abstract
We calculate the time-evolution of a discrete-time fragmentation process in which clusters of particles break up and reassemble and move stochastically with size-dependent rates. In the continuous-time limit the process turns into the totally asymmetric simple exclusion process (only pieces of size 1 break off a given cluster). We express the exact solution of master equation for the process in terms of a determinant which can be derived using the Bethe ansatz. From this determinant we compute the distribution of the current across an arbitrary bond which after appropriate scaling is given by the distribution of the largest eigenvalue of the Gaussian unitary ensemble of random matrices. This result confirms universality of the scaling form of the current distribution in the KPZ universality class and suggests that there is a link between integrable particle systems and random matrix ensembles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.