Abstract
In this mini-review, we highlight selected research by the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence “Precision Medicine in Chronic Inflammation” focusing on clinical sequencing and the clinical utility of polygenic risk scores as well as its implication on precision medicine in the field of the inflammatory diseases inflammatory bowel disease, atopic dermatitis and coronary artery disease. Additionally, we highlight current developments and discuss challenges to be faced in the future. Exemplary, we point to residual challenges in detecting disease-relevant variants resulting from difficulties in the interpretation of candidate variants and their potential interactions. While polygenic risk scores represent promising tools for the stratification of patient groups, currently, polygenic risk scores are not accurate enough for clinical setting. Precision medicine, incorporating additional data from genomics, transcriptomics and proteomics experiments, may enable the identification of distinct disease pathogeneses. In the future, data-intensive biomedical innovation will hopefully lead to improved patient stratification for personalized medicine.
Highlights
Since sequencing-based high throughput methods have led to cost-effective sequencing of big patient cohorts, our understanding of the genetic background of diseases has evolved
In chronic inflammatory diseases, such as inflammatory bowel disease (IBD), atopic dermatitis (AD) and coronary artery disease (CAD), research has revealed a number of risk loci that are involved in disease pathophysiology
Which variants lead to a phenotype? Which combinations of variations, but not single variants lead to a combined effect that causes physiological impairments? Are patient cohorts where genetic information is derived from predictive for individual patients? And even if we can pinpoint a causative variant, can patients profit from this?
Summary
Since sequencing-based high throughput methods have led to cost-effective sequencing of big patient cohorts, our understanding of the genetic background of diseases has evolved. The more data we are accumulating, the more we understand how complex the genetic background of some diseases is. The reasons are as manifold as the genetic variants that can lead to complex inflammatory disease. We deepen our understanding of the genetic background that underlies disease on an individual basis and with this we, for the first time, have the tools to implement therapies that distinguish disease subtypes but likewise optimize drug efficacy and minimize side effects. Sequencing can lead to the identification of subtypes of the disease based on their genetical characteristics. IBD, AD and CAD represent multifactorial disorders, with genetic as well as environmental factors contributing to the respective clinical phenotype.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.