Abstract

The dc current-voltage characteristics of small Josephson junctions reveal features that are not observed in larger junctions, in particular, a switch to the finite voltage state at current values much less than the expected critical current of the junction and a finite resistance in the nominally superconducting regime. Both phenomena are due to the increased sensitivity to noise associated with the small capacitance of the Josephson junction and have been extensively studied a few decades ago. Here I focus on the current bias dependence of the differential resistance of the junction at low current bias in the nominally superconducting regime, using a quantum Langevin equation approach that enables a physically transparent incorporation of the noise environment of the junction. A similar approach might be useful in modeling the sensitivity of superconducting qubits to noise in the microwave regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.