Abstract
In order to remove the effect of current crowding on electromigration, thick Cu under-bump metallization has been widely adopted in the electronics industry. Three-dimensional (3-D) integrated circuits, using through Si via Cu column interconnects, is being developed, and it seems that current crowding may not be a reliability issue. However, statistical experiments and 3-D finite element simulation indicate that there is a transition from no current crowding to current crowding, caused by void growth at the cathode. An analysis of the electromigration-induced failure mechanism in solder joints having a very thick Cu layer is presented. It is a unique failure mechanism, different from that in flip chip technology. Moreover, the study of marker displacement shows two different stages of drift velocity, which clearly demonstrates the back-stress effect and the development of compressive stress.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.