Abstract

Abstract The nonlocality of the exchange-correlation (xc) potential, i.e., the fact that the xc potential at a certain position depends on the global distribution of the particle density in space, is the curse of density functional theory. It is mainly because of this fact that, even after years of intensive studies, the exact form of the xc potential as a functional of the density remains unknown. Nevertheless, it is true that many accurate and useful results can be obtained from the use of an approximation – the local density approximation (LDA) – which ignores the problem altogether. Apparently, the nonlocal dependence of the Kohn-Sham orbitals on the density is sufficient in many cases to give the right quantum chemistry. Furthermore, a number of successful strategies have been designed to go beyond the LDA when needed: in one such approach (the generalized gradient approximation – GGA) one goes beyond the LDA by including the dependence of the xc potential on the gradient of the local density; in another one expresses the xc potential as a functional of the Kohn-Sham orbitals, and, finally, in the “meta-GGA” approach one fights the problem by including additional local variables, such as the kinetic energy density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.