Abstract

Model predictive control (MPC) is a powerful tool for the control of permanent magnet synchronous motors. However, conventional MPC permits using a single voltage vector during one control interval. This results in higher current distortions and large torque ripples. Sensitivity to control parameters is another issue associated with conventional MPC. The duty cycle suggests using an active vector and a null vector during one sampling interval. The method needs excessive computational and prediction effort. Furthermore, a necessary zero vector as the second vector might not give the optimal results. To overcome the problems of computational burden, this paper proposes that a reference voltage vector can be calculated and used to determine the voltage vector to be used for the next interval. This reduces the computational effort to a minimum. Furthermore, it is proposed that the second vector can either be active or null. To overcome the problem of parameter dependence, an electromotive force is calculated on basis of previous values. Simulations have been carried out to verify the efficacy of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.