Abstract
We consider the motion of an overdamped Brownian particle in a washboard potential exerted to a static tilting force. The bias yields directed net particle motion, i.e., a current. It is demonstrated that with an additional time-delayed feedback term, the particle current can be reversed against the direction of the bias. The control function induces a ratchetlike effect that hinders further current reversals and thus the particle moves against the direction of the static bias. Furthermore, varying the delay time allows also to continuously depreciate and even stop the transport in the washboard potential. We identify and characterize the underlying mechanism which applies to the current control in a wide temperature range.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.