Abstract
We investigate the response of a relativistic plasma to electromagnetic fields in the framework of the Boltzmann equation incorporating a collision term in the relaxation rate approximation selected in a form assuring current conservation. We obtain an explicit solution for the linearized perturbation of the Fermi–Dirac equilibrium distribution in terms of the average relaxation rate κ. We study the resulting covariant, gauge invariant, and current conserving form of the polarization tensor in the ultrarelativistic and non-relativistic limits. We evaluate the susceptibility in the ultrarelativistic limit and explore their dependence on κ. Finally, we study the dispersion relations for the longitudinal and transverse poles of the propagator. We show that for κ>2ωp, where ωp is the plasma frequency, the plasma wave modes are overdamped. In the opposite case, κ≪ωp, the propagating plasma modes are weakly damped.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.