Abstract

Indoor mold grows ubiquitously in humid areas and can affect occupants' health. To prevent indoor mold contamination, one of the key measures suggested by the World Health Organisation and United States Environmental Protection Agency is to maintain an indoor relative humidity (RH) level below 75% or at 30-60%, respectively. However, in tropical and subtropical areas, maintaining these suggested RH levels is equivalent to operating a 24-h air-conditioner (AC) or dehumidifier, which is energy-consuming. As a large part of building expense, the operation time of ACs has been regularly proposed to be cut down because of the requirement of building sustainability. This leads to a trade-off between sustainable building performance and indoor mold hygiene. To balance this trade-off, more sustainable alternatives, such as those that target physical environments (e.g. nutrient and temperature level) or apply new surface coating technologies to inhibit mold growth, have been launched. Despite these initiatives, indoor mold contamination remains an unresolved issue, mainly because these alternative measures only exhibit limited effectiveness or require extra effort. This review aims to summarize the currently adopted mold control measures and discuss their limitations as well as the direction for the future development of sustainable mold control strategies. SIGNIFICANCE AND IMPACT OF THE STUDY: People spend most of their time indoors and hence the presence of indoor mold contamination can compromise the occupants' health. With the wake of climate change which is expected to see an increase in RH and temperature, tropical and subtropical areas are even more prone to mold contamination than they used to be. This study may help facilitate the development of sustainable and effective mold control strategies in the indoor environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call